

ACD/ChromGenius:

Automated Method Selection for LCMS

RTP Seminar June 3, 2004

Advanced Chemistry Development, Inc. (ACD/Labs)

Visionary Software for Scientists

Introduction

Who is the ideal candidate for automated method selection?

- What is the usual approach?
- What are the limitations?
- Generation How does ChromGenius work?
- What's new in 8.0?
- Wrapping up

Visionary Software for Scientists

The ideal candidate:

- Hundreds to thousands of samples
- So time for method development
- FAST run times are necessary
- Always gradients
- A few standard, or generic, methods
- Restricted column choices
- Almost always LCMS

Visionary Software for Scientists

S

hromGeniu

What is the typical approach in HT Labs?

- Generic methods non-targeted approach
- Fast LCMS gradients
- A few methods are used to cover anticipated structural diversity
 - Inject samples under each method and observe the results
 - Or perhaps examine those results and re-inject the samples that didn't work.

Visionary Software for Scientists

Challenges associated with Generic Methods

- Problem compounds:
 - Instrument downtime!
- Some compounds elute too early:
 - MW verification, but no purity estimation
 - Minimal resolution, but bad purity estimation
- Scale-up from an "okay" method can be tricky at best

So Let's Predict the Best Method to Use!

- Design several complementary methods
- Use structure(s) available to choose
- Target:
 - Reasonable k'
 - Resolution from expected impurities

The Prediction of Chromatography: A Great Challenge

- Complex retention mechanisms
- Fast gradient conditions
- PH issues when organic solvents are present

So how do you go about predicting chromatography under these conditions?

Visionary Software for Scientists

Spectroscopy • Chromatography • PhysChem • Chemical Naming • Drawing • Databasing • Enterprise Solutions

U niu ChromGe

ChromGeniu

LC Simulator and t_R Prediction.

LC Simulator uses predicted physicochemical parameters to model retention behavior in separations.

LogP

LogD

∞MW, MR, MV

LC simulator uses actual chromatographic data to train the prediction.

Visionary Software for Scientists

LC Simulator Backbone Prediction of t_Rs

Given an experimental set:

What are the limitations of this approach?

- Similarity of training set to new compounds
- Number of compounds in training set
- pH issues
- Gradients are not explicitly modeled

How can ChromGenius help?

- ChromGenius chooses the most relevant training set from *multiple* chromatograms.
- More compounds:
 - Better characterization of separation
 - More PhysChem terms
- and more relevant compounds:
 Similar retention mechanism
 Inherent gradient compensation

Visionary Software for Scientists

Accuracy of prediction goes up with similarity to training set

- Relevance" of the training compounds has a bearing on the accuracy:
 - Processes that are NOT modeled are "constants"
 - Similar compounds elute at similar elution times – inherent gradient correction

Visionary Software for Scientists

nin

V

5

hrom

Generic Methods and ChromGenius Under the surface

Visionary Software for Scientists

Selection of Methods

Visionary Software for Scientists

SE VVVVV ChromGenius ٦T -Pl ١٩

Calcutate SDfiles in	Batch Mode	×
SDfiles ✓ D:\examples\dtes1 ✓ D:\examples\med_ ✓ D:\examples\test2. ✓ D:\examples\test.s ✓ D:\examples\benz ✓ D:\exampl	.SDF chem.sdf SDF df _ac.sdf pr SDF ITes	Output to Report Method One Best Only One Best Only One Best 3 One All Predicted Properties ✓ Suitability Coefficient ✓ Retention time (tR), min
Several Mixture Mixture Iden	Complex SDfile Options	×
Place Results Into ✓ <u>I</u> able	SDfile Field for Mixture Identification Mixture Identifier: Location Compound Status Options Image: Extract Main Compound within Mixtur SDfile Field Name: Field Value for Main Compound: Field Value for Impurity:	 Load SDfile Fields Contaminant Status desired contaminant
	🗸 ок	🗶 Cancel

Spect

The Basis of Method Selection

Minimum k'

- Maximum retention time
- Resolution from expected impurities
- Favored methods versus unfavored

niu

hromGe

An Early Application Collaboration with Specs

- LCMS structure verification and purity measurement
- One high-throughput method
- 100,000 diverse drug-like and "building block" compounds per year
- ONE chromatographic method
- 20% of compounds elute too soon for purity measurement

The challenge is to locate the 'fast eluters' prior to the run so that a different method can be applied.

Structure Similarity and Accuracy – 2006 compounds Specs Method 1 Experimental Conditions:

- •Waters 2690 Separation Module
- Waters Symmetry® C18 (2.1 x 50 mm), 3.5 μm, 100 Å
- Column temperature: 30°C
- Flow: 0.7 1.0 ml/min.

• Mobile phase: gradient elution with water/acetonitrile/5% formic acid in water

- start with the ratio 89:10:1 going to 0:99:1 in 4 minutes
- 2 minutes isocratic with 0:99:1
- 1 minute stabilization at initial conditions (89:10:1)
- After 5 min the flow is increased to 1.0 ml/min (!)
- Total run time: 7 minutes

Visionary Software for Scientists

Structure Similarity and Accuracy – 2006 compounds Specs Method 1 Experimental Conditions:

- •Waters 2690 Separation Module
- Waters Symmetry® C18 (2.1 x 50 mm), 3.5 μm, 100 Å
- Column temperature: 30°C
- Flow: 0.7 1.0 ml/min.

• Mobile phase: gradient elution with water/acetonitrile/5% formic acid in water

- start with the ratio 89:10:1 going to 0:99:1 in 4 minutes
- 2 minutes isocratic with 0:99:1
- 1 minute stabilization at initial conditions (89:10:1)
- After 5 min the flow is increased to 1.0 ml/min (!)
- Total run time: 7 minutes

Visionary Software for Scientists

Structure Similarity and Accuracy – 2006 compounds

ChromGenius Calculation Settings

- Dice Coefficient Similarity Search
- 25 structure training sets
 pH = 2.88

Visionary Software for Scientists

Structure Similarity and Accuracy – 2006 compounds

Each red point is the average of 2006 predictions

Average error goes from 9 to 13% as similarity goes from 0.65 to 0.15

These points represent normal working conditions Visionary Software for Scientists Spectroscopy • Chromatography • PhysChem • Chemical Naming • Drawing • Databasing • Enterprise Solutions

eniu

ChromG

Structure Similarity and Accuracy – 2006 compounds

 Visionary Software for Scientists

 Spectroscopy • Chromatography • PhysChem • Chemical Naming • Drawing • Databasing • Enterprise Solutions

Structure Similarity and Accuracy – 2006 compounds

 Visionary Software for Scientists

 Spectroscopy • Chromatography • PhysChem • Chemical Naming • Drawing • Databasing • Enterprise Solutions

How Similar is Dice Coeff. = 0.65?

Better Analytical Methods Mean Better Purity

- Decisions are based on initial data:
 Use/purify/reject
 - Better estimations of purity lead to better decisions
- Analytical methods are normally scaled up for preparatory work:

Better analytical methods are easier to scale up

...users have better libraries with higher confidence in their measurements.

Visionary Software for Scientists

Tiered Methods

Are all methods equally desirable?

 Visionary Software for Scientists

 Spectroscopy • Chromatography • PhysChem • Chemical Naming • Drawing • Databasing • Enterprise Solutions

TFA and Generic Methods

- TFA is great for chromatography.
- TFA is bad for drug discovery:
 - Cytotoxicity at 10 nM concentrations
 - Chemical stability issues
- TFA should be used as an additive on the prep scale only when absolutely necessary.

ChromGenius is designed with "tiered" methods.

Visionary Software for Scientists

ChromGenius – Batch versus Single Sample

- ChromGenius is designed to support combichem as well as walk-ups
- Plate data can be input with spreadsheets of method choices as output; or
- Users input sample information manually and view expected chromatograms

Creating the Database Amassing a Knowledge Base

The methods we ship are excellent

- Your methods may be preferred
- ChrGen databases can be created easily:

ChromManager database conversion

SDF import

ChromGeniu

Creating the Database OpenLynx Data Conversion

Automatic .SDF/.RPT retention time extraction utility

Import Experimental Data				
Experimental Data From				
File Format File Name				
Main MDL SDfiles(*.sdf)				
Additional OpenLynx Report(*.rp				
OpenLynx DenLynx Report(*.rpt)				
Correspondence of Report File Samples and SDfile Records				
Report File Sample Field SD file Field				
▼ <=> X <				
Use as Peak Name :				
Molecule Name from <u>H</u> eader Block of SDfile				
O SDfile Field				
C Peak Name from Report File				
Report File Fileds to Import SDfile Fields to Import Load Fields				
Method Parameters				
New				
E.B.				
Imp <u>o</u> rt				
Cancel ? Help				

Visionary Software for Scientists

Structure-based Method Selection

Inappropriate methods may mean: Costly reruns >Instrument/analyst time wasted > Delays in the project Inaccurate purity estimations >Incorrect decisions >Missed candidates? ChromGenius can help increase throughput and sample quality

Visionary Software for Scientists

What's new in v8.0?

Faster calculations

- Enhanced import options
- Improved plate view and report

ChromGenius

Can import RT from MassLynx .rpt

CD/ChromGenius:	Database Window - [D:\examples\ChromGen\MOVIES\Specs_HA.CGB]	
<u>D</u> atabase <u>V</u> iew <u>M</u> ethor	Becord Structure Search Lists Plates Options ACD/Labs Help	-
금 논 💿 🔹	Import Experimental Data	
	Experimental Data From	
Table of Peaks		'S
NO. ID V Nar 1 298 bretvljum	Main MDL SDhies(*.sdf) J:\Work\Current\LhromGen\Films\Examples\Import\A	
1 230 bretynam	Additional OpenLynx Report(*.rp J:\Work\Current\ChromGen\Films\Examples\Import\A 💌	
	Conservations of December and CDGIs December	.0mM NH4C104; 0.
	Correspondence or Report File Samples and Subrile Records IDNUMBER	
	Use as Peak Name :	
	O Molecule Name from <u>H</u> eader Block of SDfile	_
	O. SDfile Field X	F
	C. Pack News for Parent File	
D	• Feak Name from Report File	281 280 288
Br	Beport File Fileds to Import SDfile Fields to Import Load Fields	
	Method Parameters	
	t0: 0.3675min at Flow Rate:0.7ml/min	
	Instrumental Name: Waters Alliance Edit	
	Column Name: Waters Symmetry C18	
\sim	Length: 5cm	
	From DB	
ID: 299	OK X Cancel 7 Help	
Che <u>m</u> Sk <u>R</u> esi	ults <u>H</u> istory CGData <u>b</u> ase	

Visionary Software for Scientists Spectroscopy • Chromatography • PhysChem • Chemical Naming • Drawing • Databasing • Enterprise Solutions

New SDF calculation options

Calcutate SDfiles in Batch Mode	×			
SDfiles D:\examples\dtes1.SDF D:\examples\med_chem.sdf D:\examples\test2SDF D:\examples\test.sdf D:\examples\test.sdf D:\examples\test.sdf D:\examples\test.sdf D:\examples\test.sdf D:\examples\test.sdf D:\examples\test.sdf D:\examples\test.sdf Sigle Mixture Separate Structures Single Mixture Mixture Identifier: Location Options	Output to Report Method One Best Only Best 3 All Predicted Properties Suitability Coefficient Retention time (tR), min Retention Factor (k'), min Peak Width			
Place Results Into ✓ Iable				
Folder Name : D:\examples\chrgen Image: Use Original Folder Image: Keep Backup Copy Image: Sort Results by Methods Image: Separate Output File for	■ … <u>R</u> eport SDfile Fields… Each Method			
✓ OK X Cancel ? Help				

Complex SDfile Options	×				
SDfile Field for Mixture Identification					
Mixture Identifier: Location	Load SDfile Fields				
Compound Status Options					
Extract Main Compound within Mixture					
SDfile Field Name:	Contaminant Status 🗾 💌				
Field Value for Main Compound:	desired 💌				
Field Value for Impurity:	contaminant 💌				
🗸 ОК	🗶 Cancel				

Visionary Software for ScientistsSpectroscopy • Chromatography • PhysChem • Chemical Naming • Drawing • Databasing • Enterprise Solutions

More SDF options

MACD/ChromGenius: Database Window - [D:\examples\ChromGen\MOVIES\Specs_HA.CGB]	_ & ×
Database View Method Record Structure Search Lists Plates Options ACD/Labs Help	-
🛃 🤁 💿 🗈 Import Experimental Data	
Table of Peaks	
No ID V Nat Main MDL SDBlee(* sdb V L\//ork\Current\ChromGen\Films\Evamples\Import\A V	5
1 298 bretylium	
Additional UpenLynx Report(*.rp Y J:\Work\Current\ChromGen\Films\Examples\Import\A Y	
OpenLynx Report File Options	0mM NH4C104 • 0
Correspondence of Report File Samples and SDfile Records	
Report File Sample Field SDfile Field	
SampleID 💌 <=> X IDNUMBER <	
Use as Peak Name :	
Molecule Name from <u>H</u> eader Block of SDhie	
O SDfile Field X	
Peak Name from Report File	297 298 299
Br	
Report File Eileds to Import SDfile Fields to Import Load Fields	
Method Parameters	
10: 0.3675min at Flow Rate:0.7ml/min New	
Plate Number: 4500	
Column Name: Waters Symmetry C18	
Diameter: 0.21cm	
From DB	
ID: 299 ✓ OK X Cancel ? Help	
Che <u>m</u> Sk <u>R</u> esults <u>H</u> istory CGData <u>b</u> ase	

Visionary Software for Scientists

Enhanced plate options

Visionary Software for Scientists

Acknowledgements

Michael McBrien, ACD/Labs
Rhiannon Jones, ACD/Labs
Eduard Kolovanov, ACD/Labs

 Visionary Software for Scientists

 Spectroscopy • Chromatography • PhysChem • Chemical Naming • Drawing • Databasing • Enterprise Solutions